Open AccessCCS ChemistryRESEARCH ARTICLES7 May 2024

A Quasi-Solid-State Electrolyte with Semi-Immobilized Solvent-Like Sites for Lithium-Metal Batteries

    Quasi solid-state lithium-metal batteries (QSSLMBs) hold significant promise for enhanced energy density when compared to conventional battery systems. Nevertheless, current QSSLMBs face challenges in lithium dendrites and electrode-electrolyte interfacial side reactions driven by excessive active free solvent molecules. Herein, a metal–organic framework (MOF) with chemically grafted soft multiether molecules (d-Gluconic acid,2,4:3,5-di-O-methylene-, denoted as G) has been proposed to serve as a solid-state electrolyte (SSE). The as-obtained M-G based electrolyte (MGE) comprises structured MOF channels with semi-immobilized solvent-like sites (G molecules), which replace liquid molecules to coordinate with Li+ ions. The MGE reduces the demand for solvents compared with traditional quasi-solid-state electrolytes, thus suppressing interface side reactions. This arrangement also facilitates achieving an elevated Li+ transference number (0.64) and a broad electrochemical stability window (5.4 V). Ultimately, the solid-state Li//Li symmetrical battery displays an extended lifetime surpassing 1500 h under 1 mA cm−2. The solid-state LiFePO4//Li battery utilizing the flame-retarded MGE attains an impressive capacity retention of 95.75% over 600 cycles. The MOF-based functionalization strategy introduces an innovative approach to designing a high-performance SSE for advanced solid-state lithium metal batteries.

    References

    • 1. Janek J.; Zeier W. G.A Solid Future for Battery Development.Nat. Energy2016, 1, 16141. Google Scholar
    • 2. Guo Y.; Wu S.; He Y.-B.; Kang F.; Chen L.; Li H.; Yang Q.-H.Solid-State Lithium Batteries: Safety and Prospects.eScience2022, 2, 138–163. Google Scholar
    • 3. Zhao Q.; Liu X.; Stalin S.; Khan K.; Archer L. A.Solid-State Polymer Electrolytes with In-Built Fast Interfacial Transport for Secondary Lithium Batteries.Nat. Energy2019, 4, 365–373. Google Scholar
    • 4. Hu Y.; Dunlap N.; Long H.; Chen H.; Wayment L. J.; Ortiz M.; Jin Y.; Nijamudheen A.; Mendoza-Cortes J. L.; Lee S.-H.; Zhang W.Helical Covalent Polymers with Unidirectional Ion Channels as Single Lithium-Ion Conducting Electrolytes.CCS Chem.2021, 3, 2762–2770. LinkGoogle Scholar
    • 5. Rao Y.; Yang J.; Chu S.; Guo S.; Zhou H.Solid-State Li-Air Batteries: Fundamentals, Challenges, and Strategies.SmartMat2023, 4, e1205. Google Scholar
    • 6. Zhao Q.; Stalin S.; Zhao C.-Z.; Archer L. A.Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries.Nat. Rev. Mater.2020, 5, 229–252. Google Scholar
    • 7. Yan S.; Lu Y.; Liu F.; Xia Y.; Li Q.; Liu K.Zwitterionic Matrix with Highly Delocalized Anionic Structure as an Efficient Lithium Ion Conductor.CCS Chem.2023, 5, 1612–1622. LinkGoogle Scholar
    • 8. Wang J.; Chen L.; Li H.; Wu F.Anode Interfacial Issues in Solid-State Li Batteries: Mechanistic Understanding and Mitigating Strategies.Energy Environ. Mater.2023, 6, e12613. Google Scholar
    • 9. Zhang J.; Chou J.; Luo X. X.; Yang Y. M.; Yan M. Y.; Jia D.; Zhang C. H.; Wang Y. H.; Wang W. P.; Tan S. J.; Guo J. C.; Zhao Y.; Wang F.; Xin S.; Wan L. J.; Guo Y. G.A Fully Amorphous, Dynamic Cross-Linked Polymer Electrolyte for Lithium-Sulfur Batteries Operating at Subzero-Temperatures.Angew. Chem. Int. Ed.2023, 63, e202316087. Google Scholar
    • 10. Liu Z.; Zhang S.; Zhou Q.; Zhang Y.; Lv D.; Shen Y.; Fu X.; Wang X.; Luo S.; Zheng Y.; Peng Y.; Chai J.; Liu Z.; Cui G.Insights into Quasi Solid-State Polymer Electrolyte: The Influence of Succinonitrile on Polyvinylene Carbonate Electrolyte in View of Electrochemical Applications.Battery Energy2023, 2, 20220049. Google Scholar
    • 11. Bai S.; Kim B.; Kim C.; Tamwattana O.; Park H.; Kim J.; Lee D.; Kang K.Permselective Metal-Organic Framework Gel Membrane Enables Long-Life Cycling of Rechargeable Organic Batteries.Nat. Nanotechnol.2021, 16, 77–84. Google Scholar
    • 12. Cheng Z.; Lian J.; Chen Y.; Tang Y.; Huang Y.; Zhang J.; Xiang S.; Zhang Z.Robust In-Zr Metal-Organic Framework Nanosheets as Ultrathin Interlayer Toward High-Rate and Long-Cycle Lithium-Sulfur Batteries.CCS Chem.2024, 6, 988–998. LinkGoogle Scholar
    • 13. Gao Z.; Xie H.; Yang X.; Zhang L.; Yu H.; Wang W.; Liu Y.; Xu Y.; Ma B.; Liu X.; Chen S.Electric Vehicle Lifecycle Carbon Emission Reduction: A Review.Carbon Neutralization2023, 2, 528–550. Google Scholar
    • 14. Chu Z.; Zhuang S.; Lu J.; Li J.; Wang C.; Wang T.In-Situ Electro-Polymerization of l-Tyrosine Enables Ultrafast, Long Cycle Life for Lithium Metal Battery.Chin. Chem. Lett.2023, 34, 107563. Google Scholar
    • 15. Niu Y.-B.; Yin Y.-X.; Wang W.-P.; Wang P.-F.; Ling W.; Xiao Y.; Guo Y.-G.In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries.CCS Chem.2020, 2, 589–597. AbstractGoogle Scholar
    • 16. Chang Z.; Qiao Y.; Yang H.; Cao X.; Zhu X.; He P.; Zhou H.Sustainable Lithium-Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low-Cost Molecular Sieve.Angew. Chem. Int. Ed.2021, 60, 15572–15581. Google Scholar
    • 17. Feng Y.; Zhong B.; Zhang R.; Peng M.; Hu Z.; Wu Z.; Deng N.; Zhang W.; Zhang K.Achieving High-Power and Dendrite-Free Lithium Metal Anodes via Interfacial Ion-Transport-Rectifying Pump.Adv. Energy Mater.2023, 13, 2203912. Google Scholar
    • 18. Ling C.; Naren T.; Liu X.; Yang J.; Xiao P.; Wei W.; Ji X.; Kuang G.-C.; Chen L.In-Situ Polymerization Induced Phase Separation to Develop High-Performance Self-Healable Polymeric Electrolytes for Lithium Metal Battery.Mater. Today Energy2023, 36, 101372. Google Scholar
    • 19. Zheng Y.; Yang N.; Gao R.; Li Z.; Dou H.; Li G.; Qian L.; Deng Y.; Liang J.; Yang L.; Liu Y.; Ma Q.; Luo D.; Zhu N.; Li K.; Wang X.; Chen Z.“Tree-Trunk” Design for Flexible Quasi-Solid-State Electrolytes with Hierarchical Ion-Channels Enabling Ultralong-Life Lithium-Metal Batteries.Adv. Mater.2022, 34, 2203417. Google Scholar
    • 20. Chang Z.; Qiao Y.; Deng H.; Yang H.; He P.; Zhou H.A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery.Joule2020, 4, 1776–1789. Google Scholar
    • 21. Zhang R.; Feng Y.; Ni Y.; Zhong B.; Peng M.; Sun T.; Chen S.; Wang H.; Tao Z.; Zhang K.Bifunctional Interphase with Target-Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode.Angew. Chem. Int. Ed.2023, 62, e202304503. Google Scholar
    • 22. Zhou L.; Jo S.; Park M.; Fang L.; Zhang K.; Fan Y.; Hao Z.; Kang Y. M.Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries.Adv. Energy Mater.2021, 11, 2003054. Google Scholar
    • 23. Meng Z.; Qiu Z.; Shi Y.; Wang S.; Zhang G.; Pi Y.; Pang H.Micro/Nano Metal-Organic Frameworks Meet Energy Chemistry: A Review of Materials Synthesis and Applications.eScience2023, 3, 100092. Google Scholar
    • 24. Xu Y.; Jiao L.; Ma J.; Zhang P.; Tang Y.; Liu L.; Liu Y.; Ding H.; Sun J.; Wang M.; Li Z.; Jiang H.-L.; Chen W.Metal-Organic Frameworks for Nanoconfinement of Chlorine in Rechargeable Lithium-Chlorine Batteries.Joule2023, 7, 515–528. CrossrefGoogle Scholar
    • 25. Ouyang Y.; Gong W.; Zhang Q.; Wang J.; Guo S.; Xiao Y.; Li D.; Wang C.; Sun X.; Wang C.; Huang S.Bilayer Zwitterionic Metal-Organic Framework for Selective All-Solid-State Superionic Conduction in Lithium Metal Batteries.Adv. Mater.2023, 35, 202304685. Google Scholar
    • 26. Wang Z.; Du Z.; Liu Y.; Knapp C. E.; Dai Y.; Li J.; Zhang W.; Chen R.; Guo F.; Zong W.; Gao X.; Zhu J.; Wei C.; He G.Metal-Organic Frameworks and Their Derivatives for Optimizing Lithium Metal Anodes.eScience2024. DOI: https://doi.org/10.1016/j.esci.2023.100189 CrossrefGoogle Scholar
    • 27. Hou T.; Xu W.; Pei X.; Jiang L.; Yaghi O. M.; Persson K. A.Ionic Conduction Mechanism and Design of Metal-Organic Framework Based Quasi-Solid-State Electrolytes.J. Am. Chem. Soc.2022, 144, 13446–13450. Google Scholar
    • 28. Chang Z.; Yang H.; Pan A.; He P.; Zhou H.An Improved 9 Micron Thick Separator for a 350 Wh/kg Lithium Metal Rechargeable Pouch Cell.Nat. Commun.2022, 13, 6788. Google Scholar
    • 29. Feng Y.; Zhong B.; Zhang R.; Yu J.; Huang Z.; Huang Y.; Wu Z.; Fan Y.; Tian J.; Xie W.; Zhang K.Taming Active-Ion Crosstalk by Targeted Ion Sifter Toward High-Voltage Lithium Metal Batteries.Adv. Energy Mater.2023, 13, 2302295. Google Scholar
    • 30. Shi P.; Ma J.; Liu M.; Guo S.; Huang Y.; Wang S.; Zhang L.; Chen L.; Yang K.; Liu X.; Li Y.; An X.; Zhang D.; Cheng X.; Li Q.; Lv W.; Zhong G.; He Y. B.; Kang F.A Dielectric Electrolyte Composite with High Lithium-Ion Conductivity for High-Voltage Solid-State Lithium Metal Batteries.Nat. Nanotechnol.2023, 18, 602. Google Scholar
    • 31. Feng Y.; Zhou L.; Ma H.; Wu Z.; Zhao Q.; Li H.; Zhang K.; Chen J.Challenges and Advances in Wide-Temperature Rechargeable Lithium Batteries.Energy Environ. Sci.2022, 15, 1711–1759. Google Scholar
    • 32. Pan Z.; Brett D. J. L.; He G.; Parkin I. P.Progress and Perspectives of Organosulfur for Lithium-Sulfur Batteries.Adv. Energy Mater.2022, 12, 2103483. Google Scholar
    • 33. Bai S.; Sun Y.; Yi J.; He Y.; Qiao Y.; Zhou H.High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte.Joule2018, 2, 2117–2132. Google Scholar
    • 34. Zhang K.; Lee G. H.; Park M.; Li W.; Kang Y. M.Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries.Adv. Energy Mater.2016, 6, 1600811. Google Scholar
    • 35. Chang Z.; Qiao Y.; Yang H.; Deng H.; Zhu X.; He P.; Zhou H.Beyond the Concentrated Electrolyte: Further Depleting Solvent Molecules Within a Li+ Solvation Sheath to Stabilize High-Energy-Density Lithium Metal Batteries.Energy Environ. Sci.2020, 13, 4122–4131. Google Scholar
    • 36. Huang W.; Wang S.; Zhang X.; Kang Y.; Zhang H.; Deng N.; Liang Y.; Pang H.Universal F4-Modified Strategy on Metal-Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte.Adv. Mater.2023, 35, 2310147. Google Scholar
    • 37. Chang Z.; Yang H.; Zhu X.; He P.; Zhou H.A Stable Quasi-Solid Electrolyte Improves the Safe Operation of Highly Efficient Lithium-Metal Pouch Cells in Harsh Environments.Nat. Commun.2022, 13, 1510. Google Scholar
    • 38. Zhu X.; Chang Z.; Yang H.; He P.; Zhou H.Highly Safe and Stable Lithium-Metal Batteries Based on a Quasi-Solid-State Electrolyte.J. Mater. Chem. A2022, 10, 651–663. Google Scholar
    • 39. Zhu X.; Chang Z.; Yang H.; Qian Y.; He P.; Zhou H.Sifting Weakly-Coordinated Solvents Within Solvation Sheath Through an Electrolyte Filter for High-Voltage Lithium-Metal Batteries.Energy Storage Mater.2022, 44, 360–369. Google Scholar
    • 40. Shen H.; Song C.; Wang F.; Li G.; Li Y.Lithiated Graphdiyne Quantum Dots for Stable Lithium Metal Anodes.CCS Chem.2024. DOI: https://doi.org/10.31635/ccschem.31023.202303188 CrossrefGoogle Scholar
    • 41. Gong W.; Ouyang Y.; Guo S.; Xiao Y.; Zeng Q.; Li D.; Xie Y.; Zhang Q.; Huang S.Covalent Organic Framework with Multi-Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All-Solid-State Batteries.Angew. Chem. Int. Ed.2023, 62, e202302505. Google Scholar
    • 42. Fan Y.; Chang Z.; Wu Z.; Feng Y.; Du X.; Che M.; Tian J.; Xie W.; Zhang K.Nano-Confined Electrolyte for Sustainable Sodium-Ion Batteries.Adv. Func. Mater.2024. DOI: https://doi.org/10.1002/adfm.202314288 CrossrefGoogle Scholar